隨著互聯(lián)網(wǎng)、大數(shù)據(jù)、云計(jì)算等信息技術(shù)的發(fā)展,以深度神經(jīng)網(wǎng)絡(luò)為代表的AI人工智能技術(shù)才得以迅速發(fā)展,實(shí)現(xiàn)了在某些領(lǐng)域的技術(shù)突破。隨著智能制造熱潮的到來(lái),人工智能應(yīng)用已經(jīng)貫穿于設(shè)計(jì)、生產(chǎn)、管理和服務(wù)等制造業(yè)的各個(gè)環(huán)節(jié)。
物聯(lián)網(wǎng)使得大量數(shù)據(jù)能夠被實(shí)時(shí)獲取,大數(shù)據(jù)為深度學(xué)習(xí)提供了數(shù)據(jù)資源及算法支撐,云計(jì)算則為人工智能提供了靈活的計(jì)算資源。這些技術(shù)的有機(jī)結(jié)合,驅(qū)動(dòng)著人工智能技術(shù)不斷發(fā)展,并取得了實(shí)質(zhì)性的進(jìn)展。
眾所周知,AI人工智能技術(shù)正在掀起第四次工業(yè)革命的浪潮。美國(guó)啟動(dòng)“先進(jìn)制造業(yè)國(guó)家戰(zhàn)略計(jì)劃”,德國(guó)正式提出工業(yè)4.0的概念,中國(guó)部署實(shí)施“中國(guó)制造2025”計(jì)劃,在新的歷史機(jī)遇下,全球范圍內(nèi)的主要國(guó)家陸續(xù)制定了新的工業(yè)發(fā)展規(guī)劃,試圖站在新一輪工業(yè)革命浪潮的潮頭,實(shí)現(xiàn)傳統(tǒng)工業(yè)生產(chǎn)方式的轉(zhuǎn)型升級(jí),塑造數(shù)字化、智能化的新型工業(yè)形態(tài)。
人工智能制造業(yè)應(yīng)用場(chǎng)景
從應(yīng)用層面來(lái)看,一項(xiàng)人工智能技術(shù)的應(yīng)用可能會(huì)包含計(jì)算智能、感知智能等多個(gè)層次的核心能力。 工業(yè)機(jī)器人、智能手機(jī)、無(wú)人駕駛汽車、無(wú)人機(jī)等智能產(chǎn)品,本身就是人工智能的載體,其硬件與各類軟件結(jié)合具備感知、判斷的能力并實(shí)時(shí)與用戶、環(huán)境互動(dòng),無(wú)不是綜合了多種人工智能的核心能力。
目前制造企業(yè)中應(yīng)用的人工智能技術(shù),主要圍繞在智能語(yǔ)音交互產(chǎn)品、人臉識(shí)別、圖像識(shí)別、圖像搜索、聲紋識(shí)別、文字識(shí)別、機(jī)器翻譯、機(jī)器學(xué)習(xí)、大數(shù)據(jù)計(jì)算、數(shù)據(jù)可視化等方面。下文則總結(jié)制造業(yè)中常用的八大人工智能應(yīng)用場(chǎng)景。
場(chǎng)景一:智能分揀
制造業(yè)上有許多需要分撿的作業(yè),如果采用人工的作業(yè),速度緩慢且成本高,而且還需要提供適宜的工作溫度環(huán)境。如果采用工業(yè)機(jī)器人進(jìn)行智能分揀,可以大幅減低成本,提高速度。以分揀零件為例。需要分撿的零件通常并沒(méi)有被整齊擺放,機(jī)器人雖然有攝像頭可以看到零件,但卻不知道如何把零件成功地?fù)炱饋?lái)。在這種情況下,利用機(jī)器學(xué)習(xí)技術(shù),先讓機(jī)器人隨機(jī)進(jìn)行一次分撿動(dòng)作,然后告訴它這次動(dòng)作是成功分撿到零件還是抓空了,經(jīng)過(guò)多次訓(xùn)練之后,機(jī)器人就會(huì)知道按照怎樣的順序來(lái)分撿才有更高的成功率;分撿時(shí)夾哪個(gè)位置會(huì)有更高的撿起成功率;知道按照怎樣的順序分撿,成功率會(huì)更高。經(jīng)過(guò)幾個(gè)小時(shí)的學(xué)習(xí),機(jī)器人的分撿成功率可以達(dá)到90%,和熟練工人的水平相當(dāng)。
場(chǎng)景二:設(shè)備健康管理
基于對(duì)設(shè)備運(yùn)行數(shù)據(jù)的實(shí)時(shí)監(jiān)測(cè),利用特征分析和機(jī)器學(xué)習(xí)技術(shù),一方面可以在事故發(fā)生前進(jìn)行設(shè)備的故障預(yù)測(cè),減少非計(jì)劃性停機(jī)。另一方面,面對(duì)設(shè)備的突發(fā)故障,能夠迅速進(jìn)行故障診斷,定位故障原因并提供相應(yīng)的解決方案。 在制造行業(yè)應(yīng)用較為常見,特別是化工、重型設(shè)備、五金加工、3C制造、風(fēng)電等行業(yè)。
場(chǎng)景三:基于視覺的表面缺陷檢測(cè)
基于機(jī)器視覺的表面缺陷檢測(cè)應(yīng)用在制造業(yè)已經(jīng)較為常見。利用機(jī)器視覺可以在環(huán)境頻繁變化的條件下,以毫秒為單位快速識(shí)別出產(chǎn)品表面更微小、更復(fù)雜的產(chǎn)品缺陷,并進(jìn)行分類,如檢測(cè)產(chǎn)品表面是否有污染物、表面損傷、裂縫等。目前已有工業(yè)智能企業(yè)將深度學(xué)習(xí)與3D顯微鏡結(jié)合,將缺陷檢測(cè)精度提高到納米級(jí)。對(duì)于檢測(cè)出的有缺陷的產(chǎn)品,系統(tǒng)可以自動(dòng)做可修復(fù)判定,并規(guī)劃修復(fù)路徑及方法,再由設(shè)備執(zhí)行修復(fù)動(dòng)作。
場(chǎng)景四:基于聲紋的產(chǎn)品質(zhì)量檢測(cè)與故障判斷
利用聲紋識(shí)別技術(shù)實(shí)現(xiàn)異音的自動(dòng)檢測(cè),發(fā)現(xiàn)不良品,并比對(duì)聲紋數(shù)據(jù)庫(kù)進(jìn)行故障判斷。例如,從2018年年末開始,佛吉亞(無(wú)錫)工廠就與集團(tuán)大數(shù)據(jù)科學(xué)家團(tuán)隊(duì)展開全面合作,致力于將AI技術(shù)應(yīng)用于座椅調(diào)角器的NVH性能評(píng)判(震動(dòng)噪聲測(cè)試)。2019年,佛吉亞(無(wú)錫)工廠將AI技術(shù)應(yīng)用到調(diào)角器異音檢測(cè)中,實(shí)現(xiàn)從信號(hào)采集、數(shù)據(jù)存儲(chǔ)、數(shù)據(jù)分析到自我學(xué)習(xí)全過(guò)程的自動(dòng)化,檢測(cè)效率及準(zhǔn)確性遠(yuǎn)超傳統(tǒng)人工檢測(cè)。
場(chǎng)景五:智能決策
制造企業(yè)在產(chǎn)品質(zhì)量、運(yùn)營(yíng)管理、能耗管理和刀具管理等方面,可以應(yīng)用機(jī)器學(xué)習(xí)等人工智能技術(shù),結(jié)合大數(shù)據(jù)分析,優(yōu)化調(diào)度方式,提升企業(yè)決策能力。例如,一汽解放無(wú)錫柴油機(jī)廠的智能生產(chǎn)管理系統(tǒng),具有異常和生產(chǎn)調(diào)度數(shù)據(jù)采集、基于決策樹的異常原因診斷、基于回歸分析的設(shè)備停機(jī)時(shí)間預(yù)測(cè)、基于機(jī)器學(xué)習(xí)的調(diào)度決策優(yōu)化等功能。通過(guò)將歷史調(diào)度決策過(guò)程數(shù)據(jù)和調(diào)度執(zhí)行后的實(shí)際生產(chǎn)性能指標(biāo)作為訓(xùn)練數(shù)據(jù)集,采用神經(jīng)網(wǎng)絡(luò)算法,對(duì)調(diào)度決策評(píng)價(jià)算法的參數(shù)進(jìn)行調(diào)優(yōu),保證調(diào)度決策符合生產(chǎn)實(shí)際需求。
場(chǎng)景六:數(shù)字孿生
數(shù)字孿生是客觀事物在虛擬世界的鏡像。 創(chuàng)建數(shù)字孿生的過(guò)程,集成了人工智能、機(jī)器學(xué)習(xí)和傳感器數(shù)據(jù),以建立一個(gè)可以實(shí)時(shí)更新的、現(xiàn)場(chǎng)感極強(qiáng)的“真實(shí)”模型,用來(lái)支撐物理產(chǎn)品生命周期各項(xiàng)活動(dòng)的決策。在完成對(duì)數(shù)字孿生對(duì)象的降階建模方面,可以把復(fù)雜性和非線性模型放到神經(jīng)網(wǎng)絡(luò)中,借助深度學(xué)習(xí)建立一個(gè)有限的目標(biāo),基于這個(gè)有限的目標(biāo),進(jìn)行降階建模。
場(chǎng)景七:創(chuàng)成式設(shè)計(jì)
創(chuàng)成式設(shè)計(jì)(Generative Design)是一個(gè)人機(jī)交互、自我創(chuàng)新的過(guò)程。工程師在進(jìn)行產(chǎn)品設(shè)計(jì)時(shí),只需要在系統(tǒng)指引下,設(shè)置期望的參數(shù)及性能等約束條件,如材料、重量、體積等等,結(jié)合人工智能算法,就能根據(jù)設(shè)計(jì)者的意圖自動(dòng)生成成百上千種可行性方案,然后自行進(jìn)行綜合對(duì)比,篩選出最優(yōu)的設(shè)計(jì)方案推送給設(shè)計(jì)者進(jìn)行最后的決策。創(chuàng)成式設(shè)計(jì)已經(jīng)成為一個(gè)新的交叉學(xué)科,與計(jì)算機(jī)和人工智能技術(shù)進(jìn)行深度結(jié)合,將先進(jìn)的算法和技術(shù)應(yīng)用到設(shè)計(jì)中來(lái)。 得到廣泛應(yīng)用的創(chuàng)成式算法包括:參數(shù)化系統(tǒng)、形狀語(yǔ)法(Shape Grammars(SG))、L-系統(tǒng)(L-systems)、元胞自動(dòng)機(jī)(Cellular Automata(CA))、拓?fù)鋬?yōu)化算法、進(jìn)化系統(tǒng)和遺傳算法等。
場(chǎng)景八:需求預(yù)測(cè),供應(yīng)鏈優(yōu)化
以人工智能技術(shù)為基礎(chǔ),建立精準(zhǔn)的需求預(yù)測(cè)模型,實(shí)現(xiàn)企業(yè)的銷量預(yù)測(cè)、維修備料預(yù)測(cè),做出以需求導(dǎo)向的決策。同時(shí),通過(guò)對(duì)外部數(shù)據(jù)的分析,基于需求預(yù)測(cè),制定庫(kù)存補(bǔ)貨策略,以及供應(yīng)商評(píng)估、零部件選型等。
AI人工智能賦能工業(yè)是時(shí)代發(fā)展的趨勢(shì),5G網(wǎng)絡(luò)技術(shù)成了加速這個(gè)過(guò)程的催化劑,人工智能如何更好地在工業(yè)生產(chǎn)中創(chuàng)造價(jià)值,首先需要探索人工智能在工業(yè)場(chǎng)景中的應(yīng)用方式,繼而實(shí)現(xiàn)整個(gè)工業(yè)生產(chǎn)過(guò)程的智能化。在未來(lái),工業(yè)智能將會(huì)是一個(gè)全新的圖景:技術(shù)、機(jī)器和人會(huì)以新的形式結(jié)合,形成一個(gè)高效智能的“工業(yè)有機(jī)體”。